Lamellar Body Count and Fetal Respiratory Distress Syndrome

Leo Serrano, FACHE, DLM(ASCP)
Avera McKennan Hospital and University Health Center
Sioux Falls, S.D.

Conflict of Interests

There are no conflicts of interest to declare.
Resources and Citations

There are several great resources for information on Fetal Lung Maturity Testing

- David Grenache, PhD – ARUP – Salt Lake City
- FLMoptions.com
- Anne Gronowski, PhD – Washington University School of Medicine – St. Louis
- AACC Pediatric and Maternal-Fetal Division

All of these sources were used in the preparation of this program. Their contributions are gratefully acknowledged.

Fetal Respiratory Distress Syndrome

- AKA – Hyaline Membrane Disease
- Clinical Manifestations of FRDS
 - Tachypnea – rapid shallow breathing
 - Prominent, audible grunting
 - Nasal Flaring
 - Sub-costal and inter-costal retractions
 - Cyanosis unresponsive to O2 administration
 - Progressive worsening of cyanosis and dyspnea.
 - Apnea and irregular respirations
FRDS Risk Factors

- Prematurity (<37 weeks)
- Male gender
- Caucasian race
- 2nd born infant of twins
 - More frequent in multiple births
 - History of FRDS in sibling

RDS Causes and Surfactant Composition

- Caused by a deficiency in pulmonary surfactant
- Pulmonary surfactants decrease surface tension of water
- Composition of surfactants
 - 85% phospholipids
 - Phosphatidylcholine - 76%
 - Phosphatidylglycerol - 13%
 - Phosphatidylinositol - 4%
 - Phosphatidylethanolamine - 3%
 - Sphingomyelin 2% and other phospholipids 2%
 - 10% protein
 - 5% neutral lipids
FRDS Incidence

- Most common cause of respiratory failure in neonates
- Incidence is indirectly proportional to gestational age at delivery
 - 60-80% of births at <28 weeks have FRDS
 - 15-30% of births at 32-36 weeks have FRDS
 - 5-6% of births at 37 weeks have FRDS
- FRDS of Full Term deliveries is rare

Ref: Grenache, David

Tests for FLM

For detail, refer to “Contemporary Issues in FLM Testing” presentation by David Grenache, PhD.

- Criteria for FLM Test Selection:
 - Rapid performance
 - Must have high sensitivity for immaturity and high predictive value for maturity
 - Used for clinical decision making
 - Performed on Amniotic Fluid at 32 to 38 weeks of gestation (ACOG – 2008)
Tests for FLM

- **Precursor Tests**
 - L/S Ratio was the “gold standard” but of questionable reproducibility and accuracy. Was developed in the early 1970’s.
 - PG by TLC was slow and tedious.
 - PG by agglutination technically easy, but not very sensitive – developed early 1980’s
 - S/A ratio – (Abbott FLM) – automated test developed in the late 1980’s and will no longer be available. Sensitive, quantitative
 - LBC – first described in late 1980’s but not commonly performed. Sensitive, quantitative

Lamellar Body Count

- Lamellar bodies are similar in size to blood platelets (1-5 uM or 2 -10 fL).
- They can be accurately quantified using routine hematology analyzers.
- They are formed by the Type II pneumocytes through a “packaging” process and stored as granular material.
- They are excreted from the fetal lung into the amniotic fluid.
Lamellar Bodies

Human Platelets
Lamellar Body Counts

- **Advantages**
 - High Sensitivity for immaturity
 - Quick and simple to perform
 - Require low sample volume
 - Instruments are readily available in labs

- **Disadvantages**
 - Affected by blood and meconium
 - Lab developed test - not FDA approved
 - Instrument specific cutoffs required
 - Varies by model within manufacturers

Lab Consensus Guidelines
(Neerhoff, et. al.)

- Amniotic Fluid should NOT be centrifuged
- Grossly bloody or contaminated Amniotic Fluid should NOT be used
- **Cutoffs are Instrument and Model dependent** regardless of manufacturer
 - For most analyzers, range is:
 - Mature = >50,000/uL
 - Intermediate/transitional = 15,000 to 50,000/uL
 - Immature = <15,000/uL
Consensus Range Cautions

- Consensus range was established without regard of the hematology analyzer used.
- Not all analyzers use the same parameters for counting platelets; thus, it is **IMPERATIVE** that analyzer specific cut-off values be determined by the laboratory.

Pre-Analytic Considerations

- Amniotic Fluid (AF) is a heterogeneous mixture containing sloughed cells, hair and other fetal debris.
- It should be tested promptly (< 4 hours) after collection for best results.
- It should not be centrifuged prior to analysis. It should be gently mixed well, not vortexed.
- Grossly bloody or contaminated AF should be rejected.
Comparison of Various Analyzers

- Most early studies were performed using different models of Beckman Coulter analyzers.
 - These analyzers use electrical impedance differences through a 50 μM aperture.
 - Multiple studies have shown this technology to compare favorably with previous FLM tests (L/S ratio, PG, FLM/SA).
 - LBC is faster and easier to perform than other quantitative methods.

Comparison of Various Analyzers

- When compared to the Beckman Coulter Gen S counter, various studies found:
 - Concordance Rates as follow:
 - Sysmex XE-2100 = 86%
 - Siemens Advia 120 = 78%
 - Abbott Cell-Dyn 3500 = 66%

- Manufacturers use different apertures and various impedance mechanisms.

Ref: Lu, Gronowski, et.al.
Various Analyzer Maturity Cut-Offs
(suggested from literature)

- Beckman Coulter (GenS, STKR)
 - 50,000/µL
- Sysmex (XE-2100, K-800)
 - 50,000/µL except XE-5000
- Siemens (Advia 120)
 - 50,000/µL
- Abbott (Cell Dyn 3500)
 - 80,000/µL

Ref: Lu, Gronowski, et.al.

Analyzer Differences

- Sysmex
 - Uses electrical and radio frequency impedance plus an 80 uM aperture in addition to forward and side scatter and hydrodynamic focusing.
 - For all except XE-5000, they compare very well with the consensus ranges.

- Siemens
 - Uses low angle (volume) and high angle (refractive index) light scatter from a laser. Any particle with a volume of <60 fL and a high refractive index. They compare well with the consensus ranges.

- Abbott
 - Combine optical scatter and electrical impedance. They have a positive slope compared to the other analyzers and thus use a higher cutoff value for maturity than the consensus ranges.
Sysmex XE-5000

- Uses different software parameters for the platelet count.
 - Where most analyzers size the platelet parameter down to 1 fL or less, the XE-5000 sizes platelets using a 2 fL low discriminator.
 - Thus, LBCs on the XE-5000 will tend to be as much as 50% lower in some cases.
- This led to our study comparing LBC and L/S to FRDS at delivery.
- NOT FDA Approved – Lab Developed Test

McKennon XE-5000 FRDS study

- Study performed on 68 patients
- Compared LBC, L/S and RDS at delivery
- There was 1 still born, 1 twin delivery and 2 cases with 2 specimens submitted.
- Summary of specimen results:

<table>
<thead>
<tr>
<th></th>
<th>LBC</th>
<th>L/S</th>
<th>RDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>52</td>
<td>25</td>
<td>56 none</td>
</tr>
<tr>
<td>Intermed</td>
<td>4</td>
<td>18 (m/caut)</td>
<td>-</td>
</tr>
<tr>
<td>Immature</td>
<td>13</td>
<td>5</td>
<td>12 RDS</td>
</tr>
</tbody>
</table>
McKennan Comments

- Both of the twins had respiratory distress
- All of the newborns with RD admitted to NICU
- The still born fetus had meconium contaminated AF so could not be tested.
- Several immature by LBC were called “mature w/caution” by L/S ratio.

McKennan Cut-offs for XE-5000

- Cut-offs validated for XE-5000 at AMcK.
 - Mature = >25,000/uL
 - Indeterminate/transitional = 21 to 24,000/uL
 - Immature = < 21,000/uL

Validated for our analyzer(s) in our lab
Proficiency Survey

- CAP Survey LBC-A (May 2011)
 - Ungraded Educational Challenge
 - Demonstrated that different analyzers give different results on the same sample
 - Lumps instrument by manufacturer without consideration of model. (Issue for Sysmex)
 - XE-5000 lumped in w/ other Sysmex analyzers
 - Affects the Mean, SD and CV

LBC-A

<table>
<thead>
<tr>
<th></th>
<th>LBC-01</th>
<th>LBC-02</th>
<th>LBC-03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>mean</td>
<td>SD</td>
</tr>
<tr>
<td>LBC-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulter</td>
<td>133</td>
<td>6.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Siemens</td>
<td>11</td>
<td>9.2</td>
<td>1.7</td>
</tr>
<tr>
<td>Sysmex</td>
<td>77</td>
<td>4.9</td>
<td>0.8</td>
</tr>
<tr>
<td>LBC-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulter</td>
<td>134</td>
<td>65.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Siemens</td>
<td>11</td>
<td>82.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Sysmex</td>
<td>78</td>
<td>58.8</td>
<td>3.0</td>
</tr>
<tr>
<td>LBC-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulter</td>
<td>136</td>
<td>20.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Siemens</td>
<td>11</td>
<td>27.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Sysmex</td>
<td>79</td>
<td>16.7</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Summary

- FLM II assay by Abbott will no longer be available.
- L/S ratio is labor intensive, uses very toxic reagents and requires expertise. It is not standardized.
- Fetal Lung Maturity Testing is not indicated in the majority of pregnancies—only in premature deliveries <38 weeks with a few exceptions.

Summary

- LBC is an excellent predictor of fetal lung maturity and FRDS.
- Can be performed on most hematology analyzers.
- Test is NOT FDA approved – must be validated in your lab.
- Cut-off values vary by manufacturer as well as by instrument model.
Questions??

e-mail address:
leo.serrano@avera.org